Entries in c++ (12)

Thursday
Jan192017

Catch Up

Trolley

Stock image from Shutterstock

It's been just over six years since I first announced Catch to the world as a brand new C++ test framework!

In that time it has matured to the point that it can take on the heavyweights - while still staying true to its original goals of being lightweight, easy to get started with and low-friction to work with.

In the last couple of years or so it has also increased dramatically in popularity! That sounds like a good thing - and it is - but with that comes a greater diversity of environments and usage, and more people raising issues and submitting pull requests.

Again, it's great to have so much input from the community - especially in the form of pull requests - where other developers have gone to some effort to implement a change, or a fix, and present it back for inclusion in the main project. So it's been heart-breaking for me that, between this increase in volume and finding my meagre free-time stretched even further, so many issues and PRs have been left unacknowledged - many not even seen by me in the first place.

But two things have happened, recently, that completely change this state of affairs. We're moving firmly in the right direction again.

Firstly, as mentioned in On Joining JetBrains, I've recently changed jobs to one that should give me much more time and opportunity to work on Catch - as well as the opportunity to do so in my home office - with stable internet (as opposed to on the train while commuting to and from work). The first few months were a bit of a wash for the reasons discussed in that post, but, as I also suggested there, this year has seen that change and I've been able to put in quite a lot of work on Catch already.

But that's not really enough. There's a huge back-log - and I'm still only doing this part time - and I want to spend time working on Catch2 as well (more on that soon). I don't want to end up back in the situation where everything is backing up and there's no hope of recovery.

I've been hoping to find someone else to be a key maintainer of Catch for a couple of years now. I've not been very active in this search - for all the same reasons - but it's been on my mind.

But, just last month, after I appeared on CppCast talking about JetBrains and Catch, there was a thread on Reddit about it - with many expressing concern over the Catch situation. I brought the subject up on there again and got the attention of one of the commenters.

I didn't know it at the time, but Martin Hořeňovský has been responsible for a good number of those PRs and issues that had been left unaddressed - as well as an active community member in helping address other people's issues. So it's with great pleasure (and relief!) that I can announce that Martin now has full commit rights to Catch on GitHub and has been prolific in working through the currently outstanding tickets.

Martin seems to really "get" Catch, and the design goals around it - so working with him on this the last couple of weeks has been very rewarding. From some queries I just ran on GitHub it looks like 39 issues have been closed and 38 PRs merged or closed in that time! That's compared to 9 new issues and 7 PRs - about half of which were created by Martin and I in the process. And that's not to mention all the labels we've been using to categorise the other tickets - with many marked as "Resolved - pending review" - which usually means we think it's resolved but we're just waiting for feedback (or a chance for more testing).

With 219 open issues and 41 PRs still outstanding, at time of writing, there's a lot more work to do yet - but I hope this reassures you that we're going in the right direction - and fast!

And we're not stopping with Martin. We have at least one other volunteer that I'll be bringing up to speed soon.

Catch2

I've referred to Catch2 a number of times now, and talked a little about what it will be. The biggest reason for making it a major release, according to Semantic Versioning, is that it will drop support for pre-C++11. For that reason Catch Classic (1.x) will continue to receive at least bug fix updates - but no more new features once Catch2 is fully released. A few major features in the pipeline have been explicitly deferred to Catch2: concurrency support and generators/ property-based testing in particular.

Moving to C++11 provides a very large scope for cleaning up the code-base - which has a significant volume of code dedicated to platform-specific workarounds for compiler shortcomings, missing library features such as smart pointers, and boilerplate that will no longer be necessary with things like range-based-for, auto and others. Lambdas will be useful too, but are not quite so important.

Because taking advantage of C++11 has the potential to touch almost every line of code, I'm taking the opportunity to rewrite the core of Catch - primarily the assertion macros and the infrastructure to support that. This is code that is #included in every test file, and expanded (in the case of macros) in every test case or even every assertion. Keeping this code lightweight is essential to avoiding a compile time hit. There's a number of ways this foot-print can be reduced and the rewrite will strive for this as much as possible.

The rest of the code, concerned with maintaining the registry of tests, parsing and interpreting the command line, running tests and reporting results, will be updated more incrementally.

I already have a (not-yet-public) proof-of-concept version of the re-written code. It's not yet complete but, so far, has only one standard library dependency and minimal templates. The compile-time overhead is imperceptible.

In addition to compile-time, runtime performance is also a goal of Catch2. It's not an overriding goal - I won't be obfuscating the code in the name of wringing out the last few milliseconds of performance - but this is a definite change from Catch Classic where runtime performance was a non-goal. This is in recognition of the fact that Catch is used for more than just isolated unit tests - and will also become more important with property based testing.

I don't have a timeline, yet, for when I expect Catch2 to be ready - and in the immediate term getting Catch Classic back under control is the priority. Despite the partial re-write, and the major version increment, I expect tests written against Catch Classic to mostly "just work" with Catch2 - or require very minimal changes in a some rare cases.

You

As already mentioned many developers have also spent time and effort contributing issues, fixes and even feature PRs over the years. So Catch has really been a community project for years now and I'm very grateful for all the help and support. I think Catch has shown that having a low-friction approach to testing C++ code is very important to a lot of people and I'm hoping we'll continue to build on that. Thank you all.

Wednesday
Dec282016

C++17 - Why it's better than you might think

C++20 Horizon

From Mark Isaacson's Meeting C++ talk, "Exploring C++ and beyond"

I was recently interviewed for CppCast and one the news items that came up was a trip report from a recent C++ standards meeting (Issaquah, Nov 2016). This was one of the final meetings before the C++17 standard is wrapped up, so things are looking pretty set at this point. During the discussion I made the point that, despite initially being disappointed that so many headline features were not making it in (Concepts, Modules, Coroutines and Ranges - as well as dot operator and uniform call syntax), I'm actually very happy with how C++17 is shaping up. There are some very nice refinements and features (const expr if is looking quite big on its own) - and including a few surprise ones (structured bindings being the main one for me).

But the part of what I said that surprised even me (because I hadn't really thought of it until a couple of hours before we recorded) was that perhaps it is for the best that we don't get those bigger features just yet! The thinking was that if you take them all together - or even just two or three of them - they have the potential to change the language - and the way we write "modern C++" perhaps even more so than C++11 did - and that's really saying something! Now that's a good thing, in my opinion, but I do wonder if it would be too soon for such large scale changes just yet.

After the 98 standard C++ went into a thirteen year period in the wilderness (there was C++03, which fixed a couple of problems with the 98 standard - but didn't actually add any new features - except value initialisation). As this period coincided with the rise of other mainstream languages - Java and C# in particular - it seemed that C++ was a dying language - destined for a drawn out, Cobolesque, old-age at best.

But C++11 changed all that and injected a vitality and enthusiasm into the community not seen since the late 90s - if ever! Again the timing was a factor - with Moore's Law no longer influencing single-core performance there was a resurgence of interest in low/ zero overhead systems languages - and C++11 was getting modern enough to be palatable again. "There's no such thing as a free lunch" turns out to be true if you wait long enough.

So the seismic changes in C++11 were overdue, welcome and much needed at that time. Since then the standardisation process has moved to the "train model", which has settled on a new standard every three years. Whatever is ready (and fits) makes it in. If it's not baked it's dropped - or is moved into a TS that can be given more real-world testing before being reconsidered. This has allowed momentum to be maintained and reassures us that we won't be stuck without an update to the standard for too long again.

On the other hand many code-bases are still catching up to C++11. There are not many breaking changes - and you can introduce newer features incrementally and to only parts of the code-base - but this can lead to some odd looking code and once you start converting things you tend to want to go all in. Even if that's not true for your own codebase it may be true of libraries and frameworks you depend on! Those features we wanted in C++17 could have a similar - maybe even greater - effect and my feeling is that, while they would certainly be welcomed by many (me included) - there would also be many more that might start to see the churn on the language as a sign of instability. "What? We've only just moved on to C++11 and you want us to adopt these features too?". Sometimes it can be nice to just know where you are with a language - especially after a large set of changes. 2011 might seem like a long time ago but there's a long lag in compiler conformance, then compiler adoption, then understanding and usage of newer features. Those just starting to experiment with C++11 language features are still very common.

I could be wrong about this, but it feels like there's something in it based on my experience. And I think the long gap between C++98 and C++11 is responsible for at least amplifying the effect. People got used to C++ being defined a single way and now we have three standards already in use, with another one almost ready. It's a lot to keep up with - even for those of us that enjoy that sort of thing!

So I'm really looking forward to those bigger features that we'll hopefully get in C++20 (and don't forget you can even use the TS's now if your compiler supports them - and the Ranges library is available on GitHub) - but I'm also looking forward to updating the language with C++17 and the community gaining a little more experience with the new, rapidly evolving, model of C++ before the next big push.

Wednesday
Jul082015

A Game of Tag

One of the tent-pole features of Catch is the ability to write test names as free-form strings. When you run a Catch executable from the command line you can specify a test case by name, to run just that one:

./MyTestExe "a very nice test case"

or you can use wildcards to run a group of test cases (or just one with less typing):

./MyTestExe "*very nice*"

If you want to use wildcards but you're not sure what they'll match you can combine this with the listing option, -l, to see which test cases match the pattern:

./MyTestExe "*very nice*" -l
Matching test cases:
  a very nice test case
  a not very nice test case
2 matching test cases

This is already quite a powerful way to group test cases into ad-hoc "suites". However we don't want to twist our test names into artificial schemes for this purposes (although, early on, that's exactly what I proposed). Instead Catch allows you to add "tags" to test cases.

TEST_CASE( "a very nice test case", "[nice][good]" ) { /* ... */ }
TEST_CASE( "a not very nice test case", "[nice][bad]" ) { /* ... */ }

Now we can run all tests with a certain tag:

./MyTestExe [good]

or combination of tags:

./MyTestExe [nice][good]

also with exclusions:

./MyTestExe [nice]~[bad]

unions are supported with ,:

./MyTestExe [nice],[pleasant]

Very powerful! And this functionality has been around for a while.

More recent, and less well known (mostly because they weren't documented until recently) are a set of "special tags": Instruction Tags, Hiding Tags, Tag Aliases and some automatically generated tags.

Let's see what they're all about.

Instruction Tags

In general all tags that start with a symbol are reserved by Catch (or, put another way, user defined tag names must start with an alpha-numeric character). This allows a nice rich range of namespaces for special tags. Tags that start with the ! character are Instruction tags. They inform Catch something about the test case that they apply to. At time of writing the following are defined:

  • [!hide] This "hides" the test from the default run (i.e. if you run the test executable without specifying any names or tags). This feature was originally introduced with the [hide] tag (note, no: !) - and is still supported, though deprecated. There is also a shortcut form, [.] which we'll revisit in a moment.
  • [!throws] This tells Catch that an exception may be thrown in the course of executing the test - even if it is caught and dealt with. If you've ever tried to track down a rogue exception in your debugger - and so have set the debugger to break on exceptions as they're thrown - you'll know how frustrating all the false positives coming from such tests are! So Catch provides a way to suppress exceptions it is expecting - through the -e or --nothrow options on the command line. This already skips over REQUIRE_THROWS... or CHECK_THROWS... assertions. The [!throws] tag covers you for cases where the exception is caught and handled in the code under test (or your test code).
  • [!shouldfail] This tells Catch that you're expecting this test to fail! Furthermore, if it does fail then it should treat that as a pass!
  • [!mayfail] Rather than explicitly inverting the pass/ fail logic as the previous tag does, this tag just says that the test may fail but that's ok (although it is still reported). It's also ok if it passes.

Hiding Tags

We already looked at [!hide] (and the deprecated [hide]) above, and mentioned that [.] was a shortcut for the same.

It turns that when one of these tags is used it is often combined with another tag that is used when you do want to run the test. The classic example is where you write integration tests in the same executable as unit tests. By default you don't want the integration tests to run as you want the shortest possible path to running just unit tests. So you hide them but also tag them [integration], or something similar (the word "integration" has no significance to Catch). So pairings like, [.][integration] or [.][performance] are frequently found together.

So, as a convenience, Catch now supports . as a tag prefix. The rest of the tag can be completely custom and works exactly like any other normal tag - except that the test is also hidden. Our examples would, thus, be written as [.integration] and [.performance]

One final point to mention about hiding tags is that, due to the way they have evolved through a number of forms (including the severely deprecated "./" name prefix) whichever form is used will not only hide the test, but any of the other forms will match it in a tag pattern. e.g. if you tag a test with [.] you can match it with [!hide].

Tag Aliases

As we saw earlier, tags can be combined in fairly complex ways. While this is powerful and flexible, it can be a bit awkward if you often want to use the same tag expression. Wouldn't it be nice if there was a way of writing the expression once then getting Catch to remember it for you - and associate it with an easier to remember name?

Well there is! You can associate any tag pattern with a name that you can use just like any normal tag - except that it must begin with the @ character.

You create a tag alias, in code, using the CATCH_REGISTER_TAG_ALIAS macro. E.g.

CATCH_REGISTER_TAG_ALIAS( "[@not nice]", "~[nice]~[!hide]" );

This registers a tag alias, [@not nice] which, when expanded will match all tests that are not tagged [nice] but also are not hidden. The second part is important because if you have any hidden tests then they will usually be included any time you use a not expression (~) because the rule is that tests are only hidden if no pattern is specified!

Also did you notice that we had a space in the tag name? Surprised? I never said that tags could not include spaces. Of course they can.

You can register as many aliases as you like and you can put them anywhere you like (as long as catch.hpp is #included). However I recommend keeping them all in your main source file (the one you #define CATCH_CONFIG_MAIN, or equivalent) - simply so you only have to look in one place for them.

Filenames As Tags

The newest special tag form is the result of automatically generating a set of tags. The tags all begin with the # character (I've resisted the urge to call them "hash tags"). The rest of the tag is generated from the name of the source file that the test is implemented in. The full path (as reported by __FILE__) is stripped of its directories and extension - so all tests in /Development/Tests/SquirrelTests.cpp would be tagged, [#SquirrelTests].

At time of writing this feature is only available on the develop branch on GitHub - and must be specifically enabled running with the --filenames-as-tags or -# command line options. It's possible that situation may change by the time it makes it onto master.

The Tag Line

So tags not only provide a rich grouping mechanism in Catch - they also allow you to control some aspects of how Catch runs and treats test cases. Some tags can be generated for you - and some tags can be expanded from simpler forms. We've covered here the complete set of special tags at the time of writing. If you're reading this in the future there may be more - I'll try and be better at keeping the docs up-to-date there. Also any stock price tips you might have from the future would be welcome too.
Tuesday
Oct072014

Modern C++ Testing

Back in August I took my family to stay for a week at my brother's house in (Old) South Wales. I've not been to Wales for a long time and it was great to be back there - but that's not what this post is about, of course.

The thing about Wales is that it has mountains (and where there are no mountains there are plenty of hills and valleys and cliffs). Mobile cell coverage is non-existent in much of the country - particularly where my brother lives.

So the timing was particularly bad when, just as we were driving along the south cost (somewhere between Cardiff and Swansea, I think), I started getting emails and tweets from people pointing out that Catch was riding high on HackerNews! Someone had recently discovered Catch and was enjoying it enough that they wanted to share it with the community. Which is awesome!

Except that, between lack of mobile reception and spending time with my family, I didn't have opportunity to join the discussion.

When I got back home a week later I read through the comments. One of them stuck out because it called me out on describing Catch as a "Modern C++" framework (the commenter recommended another framework, Bandit, as being "more modern").

When I first released Catch, back in 2010, C++11 was still referred to as C++1x (or even C++0x!) and the final release date was still uncertain. So Catch was written to target C++03. It used a few "modern" idioms of the time - but the modernity was intended more as being a break from the past - where most C++ frameworks were just reimplementations of JUnit in C++. So I think the label was somewhat justified at the time.

Of course since then C++11 has not only been standardised but is fully, or nearly fully, implemented by many leading, mainstream, compilers. I think adoption is still not high enough, at this point, that I'd be willing to drop support for C++03 in Catch (there is even an actively maintained fork for VC6!). But it is enough that the baseline for what constitutes "modern C++" has definitely moved on. And now C++14 is here too - pushing it even further forward.

"Modern" is not what it used to be

What does it mean to be a "Modern C++ Test Framework" these days anyway? Well the most obvious thing for the user is probably the use of lambdas. Along with a few other features, lambdas allow for a lot of what previously required macros to be done in pure C++. I'm usually the first to hold this up as A Good Thing. In a moment I'll get to why I don't think it's necessarily as good a step as you might think.

But before I get to that; one other thing: For me, as a framework author, the biggest difference C++11/14 would make to something like Catch would be in the internals. Large chunks of code could be removed, reduced or at least cleaned up. The "no dependencies" policy means that Catch has complete implementations of things like shared pointers, optional types and function objects - as well as many things that must be done the long way round (such as iterating collections - I long for range for loops - or at least BOOST_FOREACH).

The competition

I've come across three frameworks that I'd say qualify as truly trying to be "modern C++ test frameworks". I'm sure there are others - and I've not really even used these ones extensively - but these are the ones I'll reference in this discussion. The three frameworks are:

  • Lest - by Martin Moene, an active contributor to Catch - and partly based on some Catch ideas - re-imagined for a C++11 world.
  • Bandit - this is the one mentioned in the Hacker News comment I kicked off with
  • Mettle - I saw this in a tweet from @MeetingCpp last week and it's what kicked off the train of thought that led me to this post

The case for test case macros

But why did I say that the use of lambdas is not such a good idea? Actually I didn't quite say that. I think lambdas are a very good idea - and in many ways they would certainly clean up at least the mechanics of defining and registering test cases and sections.

Before lambdas C++ had only one place you could write a block of imperative code: in a function (or method). That means that, in Catch, test cases are really just functions - which must have a function signature - including a name (which we hide - because in Catch the test name is a string). Those functions must be captured somehow. This is done by passing a pointer to the function to the constructor of a small class - who's sole purposes is to forward the function pointer onto a global registry. Later, when the tests are being run, the registry is iterated and the function pointers invoked.

So a test case like this:

    TEST_CASE( "test name", "[tags]" )
    {
        /* ... */
    }

...written out in full (after macro expansion) looks something like:

    static void generatedFunctionName();
    namespace{ ::Catch::AutoReg generatedNameAutoRegistrar
        (   &generatedFunctionName, 
       	    ::Catch::SourceLineInfo( __FILE__, static_cast<std::size_t>( __LINE__ ) ), 
            ::Catch::NameAndDesc( "test name", "[tags]") ); 
    }
    static void generatedFunctionName()
    {
        /* .... */
    }

(generatedFunctionName is generated by yet another macro, which combines root with the current line number. Because the function is declared static the identifier is only visible in the current translation unit (cpp file), so this should be unique enough)

So there's a lot of boilerplate here - you wouldn't want to write this all by hand every time you start a new test case!

With lambdas, though, blocks of code are now first class entities, and you can introduce them anonymously. So you could write them like:

    Catch11::TestCase( "test name", "[tags]", []() 
    {
        /* ... */
    } );

This is clearly far better than the expanded macro. But it's still noisier than the version that uses the macro. Most of the C++11/14 test frameworks I've looked at tend to group tests together at a higher level. The individual tests are more like Catch's sections - but the pattern is still the same - you get noise from the lambda syntax in the form of the []() or [&]() to introduce the lambda and an extra ); at the end.

Is that really worth worrying about?

Personally I find it's enough extra noise that I think I'd prefer to continue to use a macro - even if it used lambdas under the hood. But it's also small enough that I can certainly see the case for going macro free here.

Assert yourself

But that's just test cases (and sections). Assertions have traditionally been written using macros too. In this case the main reasons are twofold:

  1. It allows the expression evaluation to be wrapped in an exception handler.
  2. It allows us the capture the file and line number to report on.

(1) can arguably be handled in whatever is holding the current lambda (e.g. it or describe in Bandit, suite, subsuite or expect in Mettle). If these blocks are small enough we should get sufficient locality of exception handling - but it's not as tight as the per-expression handling with the macro approach.

(2) simply cannot be done without involving the preprocessor in some way (whether it's to pass __FILE__ and __LINE__ manually, or to encapsulate that with a macro). How much does that matter? Again it's a matter of taste but you get several benefits from having that information. Whether you use it to manually locate the failing assertion or if you're running the reporter in an IDE window that automatically allows you to double-click the failure message to take you to the line - it's really useful to be able to go straight to it. Do you want to give that up in order to go macro free? Perhaps. Perhaps not.

Interestingly lest still uses a macro for assertions

Weighing up

So we've seen that a truly modern C++ test framework, using lambdas in particular, can allow you to write tests without the use of macros - but at a cost!

So the other side of the equation must be: what benefit do you get from eschewing the macros?

Personally I've always striven to minimise or eliminate the use of macros in C++. In the early days that was mostly about using const, inline and templates. Now lambdas allow us to address some of the remaining cases and I'm all for that.

But I also tend to associate a much higher "cost" to macro usage when it generates imperative code. This is code that you're likely to find yourself needing to step through in a debugger at runtime - and macros really obfuscate this process. When I use macros it tends to be in declarative code. Code that generates purely declarative statements, or effectively declarative statements (such as the test case function registration code). It tends to always generate the exact same machinery - so should not be sensitive to its inputs in ways that will require debugging.

How do Catch's macros play out in that regard? Well the test case registration macros get a pass. Sections are a grey area - they are on the path of code that needs to be stepped over - and, worse, hide a conditional (a section is really just an if statement on a global variable!). So score a few points down there. Assertions are also very much runtime executable - and are frequently on the debugging path! In fact stepping into expressions being asserted on in Catch tests can be quite a pain as you end up stepping into some of the "hidden" calls before you get to the expression you supplied (in Visual Studio, at least, this can be mitigated by excluding the Catch namespace using the StepOver registry key).

Now, interestingly, the use of macros for the assertions was never really about C++03 vs C++11. It was about capturing extra information (file/ line) and wrapping in a try-catch. So if you're willing to make that trade-off there's no reason you can't have non-macro assertions even in C++03!

Back to the future

One of my longer arcs of development on Catch (that I edge towards on each refactoring) is to decouple the assertion mechanism from the guts of the test runner. You should be able to provide your own assertions that work with Catch. Many other test frameworks work this way and it allows them to be much more flexible. In particular it will allow me to decouple the matcher framework (and maybe allow third-party matchers to work with Catch).

Of course this would also allow macro-less assertions to be used (as it happens the assertions in bandit and mettle are both matcher-like already).

So, while I think Catch is committed to supporting C++03 for some time yet, that doesn't mean there is no scope for modernising it and keeping it relevant. And, modern or not, I still believe it is the simplest C++ test framework to get up and running with, and the least noisy to work with.

Friday
Dec132013

Optional streaming

Catch has a number of macros that allow values of arbitrary types to be streamed into an ostringstream. The canonical example is the INFO macro:

INFO( "There were " << bottles.size() << " green bottles, hanging on the wall" );

This macro builds up a string that will be passed to the next assertion to be included as an annotation. Note that, unlike with a naked ostringstream there is no leading <<. This makes it clean and uncluttered when you just want to log a single value (such as a string), for example:

INFO( "Weirdness" );
The obvious way to do this is for the macro to provide the leading << prior to its argument. Conceptually something like this:
#define INFO( log ) { \
	std::ostringstream oss; \
	oss << log; \
	useTheString( oss.str() ); 
}

This all works quite nicely. But there are a few other macros that use this idiom, too: WARN, SUCCEED and FAIL.

The last two are of interest because the logging behaviour is more of a secondary concern. The primary behaviour is to appear like a passing or failing assertion, respectively, without the need to actually assert on anything. SUCCEED can be useful if you otherwise have no assertions in a test and you don't want to see warnings about it. FAIL is useful if the situation that leads to the failure is not captured in an expression for some reason. It can also be useful to force a test to fail, perhaps as a placeholder. These are useful macros to have available, but they are not often needed in practice. So when they are it's nice to be able to annotate their useage inline - hence the streamed argument.

This is all well and good. But I've found there are still enough cases where I don't want to annotate that having to pass an empty string or make something up is a little annoying. I also use a similar idiom in other projects where it would be nice to be able to make the stream completely optional.

This is not as easy as it sounds, though. The first, and most obvious, issue is that this requires support for variadic macros. Catch has made use of variadic macros, where available, for some time now. In theory they are available to any C++11 compiler. In practice most, if not all, compilers that support any reasonable chunk of C++11 support variadic macros - and most supported them as an extension even before that. That's certainly true of Visual C++, GCC and Clang.

The technically more interesting problem, though, is dealing with that initial <<. Remember the first << is being supplied inside the macro. It will still be there even if the caller does not supply an argument to the macro. If we wrote FAIL the same way we presented INFO earlier (but with variadic macros) it might look something like this:

#define FAIL( ... ) { \
	std::ostringstream oss; \
	oss << __VA_ARGS__; \
	notifyFail( oss.str() ); \
}
... which, with no argument provided, would expand to...
{ 
	std::ostringstream oss; 
	oss << ; 
	notifyFail( oss.str() ); 
}

Do you see the problem? With nothing following the << this will not compile.

So do we need a different operator? What properties would we need? It seems we'd need an operator that comes in two forms: a binary operator that allows us to capture an argument, and a unary operator that allows us to omit the argument. Furthermore the binary form must not require its argument to be enclosed in any sort of brackets. Finally it must have higher precedence than << so we can switch over to normal stream insertion at that point.

That's a long list. Does such an operator exist? Fortunately there's not just one but two such operators to choose from! + and -. The only slight hitch is that the unary form is right-to-left associative, whereas the binary form is left-to-right. So how can we work these in?

Let's pick one of the operators. I've gone with +, but I don't think there is any advantage either way. Because unary + is right-to-left associative it needs to prefix something. So we can't use it at the start of our streaming expression. We can, however, use it at the end. Then we'll need an object to apply it to. The object doesn't actually need to do anything else. I've gone with this implementation of StreamEndStop in Catch:

struct StreamEndStop {
    std::string operator+() {
        return std::string();
    }
};
With this definition the expression, +StreamEndStop() now yields an empty string - which is idempotent with a stringstream. Which means we can write:
{
	std::ostringstream oss; 
	oss << +StreamEndStop();
	notifyFail( oss.str() ); 
}
And oss.str() evaluates to an empty string. Perfect. But what about when we do stream something? Well that would expand to:
{
	std::ostringstream oss; 
	oss << something +StreamEndStop();
	notifyFail( oss.str() ); 
}
... where something could be a string or variable or literal of any type. So we need some way for the expression:
something +StreamEndStop()
to yield the value of something. That's where the binary form of operator+ comes in:
template<typename T>
T const& operator + ( T const& value, StreamEndStop& ) {
	return value;
}
Now, whether we supply nothing, a single value or multiple values joined by <<s we'll end up with a stringstream containing what we expect. The relevant bit of code in Catch actually looks like this:
Catch::ExpressionResultBuilder( messageType ) \
	<< __VA_ARGS__ \
	+::Catch::StreamEndStop()
which yields an ExpressionResultBuilder that gets passed on elsewhere. This is all protected by CATCH_CONFIG_VARIADIC_MACROS. Otherwise it falls back to:
Catch::ExpressionResultBuilder( messageType ) << log
So a lot of work to save a few explicit empty strings, but sometimes it's the little things.